20 research outputs found

    Squeezing light with Majorana fermions

    Full text link
    Coupling a semiconducting nanowire to a microwave cavity provides a powerfull means to assess the presence or absence of isolated Majorana fermions in the nanowire. These exotic bound states can cause a significant cavity frequency shift but also a strong cavity nonlinearity leading for instance to light squeezing. The dependence of these effects on the nanowire gate voltages gives direct signatures of the unique properties of Majorana fermions, such as their self-adjoint character and their exponential confinement.Comment: long version: 11 pages, 5 figure

    Direct cavity detection of Majorana pairs

    Full text link
    No experiment could directly test the particle/antiparticle duality of Majorana fermions, so far. However, this property represents a necessary ingredient towards the realization of topological quantum computing schemes. Here, we show how to complete this task by using microwave techniques. The direct coupling between a pair of overlapping Majorana bound states and the electric field from a microwave cavity is extremely difficult to detect due to the self-adjoint character of Majorana fermions which forbids direct energy exchanges with the cavity. We show theoretically how this problem can be circumvented by using photo-assisted tunneling to fermionic reservoirs. The absence of direct microwave transition inside the Majorana pair in spite of the light-Majorana coupling would represent a smoking gun for the Majorana self-adjoint character.Comment: 6 pages, 4 figure

    Production of non-local quartets and phase-sensitive entanglement in a superconducting beam splitter

    Full text link
    Three BCS superconductors S_a, S_b, and S and two short normal regions N_a and N_b in a three-terminal S_aN_aSN_bS_b set-up provide a source of non-local quartets spatially separated as two correlated pairs in S_a and S_b, if the distance between the interfaces N_aS and SN_b is comparable to the coherence length in S. Low-temperature dc-transport of non-local quartets from S to S_a and S_b can occur in equilibrium, and also if S_a and S_b are biased at opposite voltages. At higher temperatures, thermal excitations result in correlated current fluctuations which depend on the superconducting phases phi_a and phi_b in S_a and S_b. Phase-sensitive entanglement is obtained at zero temperature if N_a and N_b are replaced by discrete levels.Comment: 4 pages, 2 figures; technical details attached in ancillary file http://arxiv.org/src/1102.2355v4/anc/EPAPS_Freyn_2011.pdf; higher versions: minor corrections, cleanup and corrected reference

    Finite frequency noise of a superconductor/ferromagnet quantum point contact

    Full text link
    We have calculated the finite-frequency current noise of a superconductor-ferromagnet quantum point contact (SF QPC). This signal is qualitatively affected by the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon reflection on the QPC. For a weakly transparent QPC, noise steps appear at frequencies or voltages determined directly by the SDIPS. These steps can occur at experimentally accessible temperatures and frequencies. Finite frequency noise is thus a promising tool to characterize the scattering properties of a SF QPC.Comment: 5 pages, 3 figures, revised version, to appear in Phys. Rev. Let

    Aharonov-Bohm cages in two-dimensional structures

    Full text link
    We present an extreme localization mechanism induced by a magnetic field for tight-binding electrons in two-dimensional structures. This spectacular phenomenon is investigated for a large class of tilings (periodic, quasiperiodic, or random). We are led to introduce the Aharonov-Bohm cages defined as the set of sites eventually visited by a wavepacket that can, for particular values of the magnetic flux, be bounded. We finally discuss the quantum dynamics which exhibits an original pulsating behaviour.Comment: 4 pages Latex, 3 eps figures, 1 ps figur

    Pairing of Cooper Pairs in a Fully Frustrated Josephson Junction Chain

    Full text link
    We study a one-dimensional Josephson junction chain embedded in a magnetic field. We show that when the magnetic flux per elementary loop equals half the superconducting flux quantum ϕ0=h/2e\phi_0=h/2e, a local \nbZ_2 symmetry arises. This symmetry is responsible for a nematic Luttinger liquid state associated to bound states of Cooper pairs. We analyze the phase diagram and we discuss some experimental possibilities to observe this exotic phase.Comment: 4 pages, 4 EPS figure

    Nesting Induced Precursor Effects: a Renormalization Group Approach

    Full text link
    We develop a controlled weak coupling renormalization group (RG) approach to itinerant electrons. Within this formalism we rederive the phase diagram for two-dimensional (2D) non-nested systems. Then we study how nesting modifies this phase diagram. We show that competition between p-p and p-h channels, leads to the manifestation of unstable precursor fixed points in the RG flow. This effect should be experimentally measurable, and may be relevant for an explanation of pseudogaps in the high temperature superconductors (HTC), as a crossover phenomenon.Comment: 4 pages, 4 figures, 1 tabl

    How to escape Aharonov-Bohm cages ?

    Full text link
    We study the effect of disorder and interactions on a recently proposed magnetic field induced localization mechanism. We show that both partially destroy the extreme confinement of the excitations occuring in the pure case and give rise to unusual behavior. We also point out the role of the edge states that allows for a propagation of the electrons in these systems.Comment: 22 pages, 20 EPS figure

    Strongly correlated hopping and many-body bound states

    Full text link
    We study a system in which the quantum dynamics of electrons depend on the particle density in their neighborhood. For any on-site repulsive interaction, we show that the exact two-body and three-body ground states are bound states. We also discuss the finite density case in a mean-field framework and we show that the system can undergo an unusual transition from an effective attractive interaction to a repulsive one, when varying the electron density.Comment: 6 pages, 6 EPS figures, minor modifications and references adde
    corecore